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Goal

Efficiently compute solutions for different models for waves
under ice (flexural-gravity waves) and compare the solutions.



Waves Under Ice Generated by a Moving Truck?
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Figure: Waves generated by transport trucks.

1J.J. van der Sanden and N.H. Short, “Radar satellites measure ice cover
displacements induced by moving vehicles”, Cold Regions Science and
Technology, 133, 56-62 (2017)



Tsunami Under lce?

: A I-— Propagation pattern
é‘ ‘ Intermediate contour lines
Figure: Observations of coastal landslide-generated tsunami under an ice
cover in Quebec

2], Leblanc et al, “Observations of Coastal Landslide-Generated Tsunami
Under an Ice Cover: The Case of Lac-des-Seize-lles, Québec, Canada”
Submarine Mass Movements and their Consequences, pp. 607-614, (2016)
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Model for Water Waves

For an inviscid, incompressible fluid with velocity potential
o(x,y,z,t), the forced Euler’'s equations are given by

A¢p =0, (x,y,z) € Q,
¢Z — 07 Z:—h,
7It+77x¢x+77y¢y:¢527 6 Z:T/(X7y7 t)a
1 H
¢t+ ‘V¢’ + 77+P(X Y, )__D% Z:n(X7y7 t)a
where
h: depth

F= g

D: flexural rigidity

n(x, y, t): variable surface

P(x,y,t): external pressure distribution
%—’;: condition at the interface.

Q: either periodic or infinite in x and y

Ch: Froude number



Conditions at the Interface




Conditions at the Interface

The term modelling the ice assumes
» Thin elastic plate with constant thickness
> The ice bends with the water waves
» No friction between the ice and the water
» Continuous sheet, no breaking
» No shear
with the coefficient for flexural rigidity D given by

3
H__ Eh
12(1 — 1?)

with E: Young's modulus, v: Poisson ratio, h: thickness of the ice.



Models For a Thin Sheet of Ice

We consider two models

» Biharmonic (linear) model, assuming ice behaves like an
Euler-Bernoulli thin elastic plate that gets deflected by a load
(regime where curvature is small)

H = ;/(An)sz




Models For a Thin Sheet of Ice

We consider two models

» Biharmonic (linear) model, assuming ice behaves like an
Euler-Bernoulli thin elastic plate that gets deflected by a load
(regime where curvature is small)

H = ;/(An)sz

» Cosserat (nonlinear) model, assuming the sheet of ice can
bend, twist and stretch (has a Willmore energy) 3

1 : o
Hy = 5 /(m + k2)2dS with k1, ko principle curvatures

3Plotnikov and Toland, “Modelling nonlinear hydroeslastic waves”, Phil.
Trans. R. Soc. 369, 1942-2956 (2011)



Background

A lot of work on this topic, here are a select few

>

Modelling ice: Since Greenhill (1886), people have been deriving
linear and nonlinear elasticity models with some that conserve
energy (for example Plotnikov-Toland/Cosserat model) and some
that don't (for example Kirchoff-Love model) For a review see
Squire et at. (2007)

Existence of Solutions:
Solutions in two dimensions:
Solutions in three dimensions:

High performance computing techniques:



Background

A lot of work on this topic, here are a select few

>

>

Modelling ice:

Existence of Solutions: Existence for some parameters using
Lagrangian formulation for travelling waves (Toland et al., 2008).
Akers, Ambrose and Sulon prove existence and show bifurcation
branches of solutions in 2D (2017).

Solutions in two dimensions:
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Background

A lot of work on this topic, here are a select few
» Modelling ice:
» Existence of Solutions:
> Solutions in two dimensions:

» Vanden-Broeck and P3rdu (2011) computed generalised
solitary waves and periodic waves under an ice sheet using the
Kirchhoff-Love model.

» Gao and Vanden-Broeck (2014) numerically computed periodic
and generalised solitary waves using Plotnikov-Toland model.

» Solutions for gravity waves and capillary-gravity waves have
been computed using AFM method by Deconinck, Oliveras
and T.

» Solutions in three dimensions:

» High performance computing techniques:



Background

A lot of work on this topic, here are a select few
> Modelling ice:

» Existence of Solutions:

> Solutions in two dimensions:
> Solutions in three dimensions:

» Asymptotic models by Wang and Milewski (2013) show
flexural-gravity solitary waves do not bifurcate from zero
amplitude solution.

» Vanden-Broeck and Pardu have been using the BIM method to
compute three dimensional waves for gravity, capillary-gravity
and the linear model for flexural-gravity waves

» High performance computing techniques:



Background

A lot of work on this topic, here are a select few

>

>

>

Modelling ice:

Existence of Solutions:
Solutions in two dimensions:
Solutions in three dimensions:

High performance computing techniques: Pethiyagoda et al.
(2014) computed small amplitude solutions for wake patterns using
Krylov methods, using a preconditioner based on the linearisation.
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Methods

There is a variety of methods for reformulating the problem. We
focus on

1. Boundary Integral Method (BIM) (1989) based on work by
Forbes.

2. Ablowitz, Fokas and Musslimani method (AFM) (2006)

Both of these methods have their advantages and disadvantages.
The main two disadvantages are



Methods

There is a variety of methods for reformulating the problem. We
focus on

1. Boundary Integral Method (BIM) (1989) based on work by
Forbes.

2. Ablowitz, Fokas and Musslimani method (AFM) (2006)

Both of these methods have their advantages and disadvantages.
The main two disadvantages are

» Small denominators in the integrands for BIM

» Exponentially large terms in the integrands for AFM



|dentity behind BIM

Use Green's second identity

_ _ 98 ,0a
/V(aAﬁ BAa)dV = ji(v) <a8n ﬂ@n) ds

where in three dimensions, § is the fundamental solution given by

1 1

AT ((x = x*)2 + (y — y*)? + (z — z)?)Y/2

and a = ¢ — x, which satisfies Laplace's equation.



|dentity behind AFM

If both ¢ and 1 satisfy Laplace’s equation, then

(szwx + wz(ﬁX)x + (¢zwy + "/’z¢y)y + (szwz — Oxx — ¢y¢y)z =0

Let ¥(x, y, z) = e'kixtikey+ikz e 3 particular solution with
_ /g2 2
k = \/ki + k5.
Use the divergence theorem and the boundary as well as conditions
on the solutions to obtain the non-local equation.



Surface Variables

Reformulate into surface variables (Zakharov 1969)
a(x,y,t) = ¢(x,y, 2=n;1)
Using chain rule,

(L4 n2)ax — nxnyqy — N

¢x:

1+ [Vn)|?
g, = LT %)y = TxTlydy = Tyle
g 14 [Vn|?
¢ — 77qu+’f]yCIy+77t
: 14|Vn?

Then the Bernoulli condition (local equation) becomes

(e +Vq-Vn)? _ _6H
21+ 1[vn2) oy

1
Gt IVql*+gn—
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Reformulation

Starting with Euler’s equations

> In two dimensions, the local equation is given by

l(nt + qux)2 _ _Déﬂ
2 1472 o’

1 2
qt+§qx+gn—




Reformulation

Starting with Euler’s equations

> In two dimensions, the local equation is given by

1 (nt + qux)2 _ D(SH

1,
Qt+*qx+g77—§ 1+ 12 - E

2

» In two dimensions,the nonlocal equation # is given by

27
/0 e (in; cosh(k(n + h)) + gx sinh(k(n + h))) dx = 0,

Vk € Z, k # 0.

* Ablowitz, Fokas and Musslimani, “On a new non-local formulation of water
waves”, J. Fluid Mech., vol. 562, pp. 313343 (2006)



Reformulation

» Switching to the travelling frame by setting
(x,t) = (x—ct, t).
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Reformulation

» Switching to the travelling frame by setting
(x,t) = (x—ct, t).
» Looking at the steady-state problem, set 1; = g = 0.
» Use the local equation to obtain gy.
» The non-local equation becomes

27
/ eikx\/(l + ,’73) (C2 — 2g77 - 2Dfsl_l) Slnh(k(n + h))dX = 0.
0 n

Vk € Z, k0.

where % for the linear model is

H _
577 = Tax

and for the nonlinear model

SH 1
on  (1+n2) "~

3

1 Nxx 1 Nxx
Ox 5l 3
1+72) ((1%)”)] 2((1%)”)




Numerical Continuation

Recall

2
/ eikx\/(l +12) <c2 —2gn — 2Df;H) sinh(k(n + h))dx = 0.
o n

We want to generate a bifurcation diagram:
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Numerical Continuation

Recall

2
/ eikx\/(l +12) <c2 —2gn — 2Df;H) sinh(k(n + h))dx = 0.
o n

We want to generate a bifurcation diagram:
1. Assume in general ny(x) = ZJN::L aj cos(jx).
2. Linearizing we can find the bifurcation will

start when ¢ = /(g + o) tanh(h) and e
n(x) = acos(x).

3. Use this guess in Newton's method to
compute the true solution.

4. Scale the previous solution to get a guess for
the new bifurcation parameter.

5. Apply Newton's method to find the solution.



Resonance

At the bifurcation point, the resonance condition is given by
(g + D)K tanh(h) — (g + K*D) tanh(Kh) = 0. (K #1).

%10

o A
o N A O

flexural rigidity D

N oA O o

N

4 6 8 10 12 14 16
Fourier mode k

then we obtain the equivalent of Wilton ripples.



Flexural-Gravity waves: Resonant Solutions at k = 10

h=10.05 and D ~ 8.1085 x 10>
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Comparing Models in Infinite Depth

Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

w0 Bifurcation Branch
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Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.01



Comparing Models in Infinite Depth

Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models
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Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.1



Comparing Models in Infinite Depth

Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

Bifurcation Branch
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Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.3



Comparing Models in Infinite Depth

Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models
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Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.5



Flexural-Gravity waves: Infinite Depth

first fourier coefficient

Infinite depth with D
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Models for Ice

The two different models are considered

» Biharmonic (linear) model

oH

Of _ o4
on Ve



Models for Ice

The two different models are considered

» Biharmonic (linear) model

oH

Of _ o4
on Ve

» Cosserat (nonlinear) model

SH 2 1+ 72 1472
T _ 2 s, Your) — o (T on) — o, (P oH) + o, " 5, H
&n Vva va va Va Vva

+4H® — 4KH

where
a=1+ 775 + ni

13 2 2
H=3a / [(1 + 0y ) — 20y nxy + (1 + ”lx)nyy]

1 2
K= 2 {"lxxnyy - an]



System of Equations
The final form of equations to solve for flexural-gravity waves in

infinite depth is

2 L+n2+n2 F2 om 2
o o0

/ / [(g—g"— x +x¥)K1 + nxK2] dxdy = 27(g* —x™)
—0oQ —0o0

2\ o2 2\ 42
1 (1+m5) gy +(1+my) a5 — 2nxmyaxqy +1+P+D5H 1

where
1 * * *
Ki= —am(m=n" = (x =X n = (v = y")m)
1
with

d(x,y, x*,y*n) = (x = x* )+ (y = y*)* + (n —n*)?



Symmetry
Symmetry in y direction
n(x,y) = n(x, —y)
and
q(x,y) = q(x, —y)

implies additional terms

1)+ (L +n))ax — 2y Gedy  n 1 _ Fin)
1+n2+4n2 Fra— Y

2
/ / {(q—q*— x +x*)K1 + nxkg] dxdy = 27(g*—x")
0 —00

where

Ki = Ki(x,y,m,x*,y* %) + Ki(x, =y, x*, y*, %)

Ko = Ko(x, y,m,x*,y* %) + Ka(x, =y, m, x*, y*, ")



Removing the Singularity

Part of the integral is singular ®>. Remove it by noting that

//TIXRZdXdy =
/ / |:R277x —nigz} dxdy + / / Sydxdy

1

where

Sy =

\/(1+n§2)(x—><*)2+2n§n;(x—><*)(y—y*)+(1+n;2)(y—y*)2

SL.K. Forbes, “An algorithm for 3-dimensional free-surface problems in
Hydrodynamics”, J. of Comp. Phys., vol. 82, pp. 330-347, (1989)



Removing the Singularity

Part of the integral is singular ®. Remove it by noting that

//nxkgdxdy =
// [RZUX —n§5~2} dxdy + n}; //gzdxdy

1
\/(1+n§2)(X—X*)2+277§77;(X—X*)(y—y*)+(1+77;2)(y—y*)2

where

Sy =

The integral in the box can be computed since it looks like
[Lldz=1nz

SL.K. Forbes, “An algorithm for 3-dimensional free-surface problems in
Hydrodynamics”, J. of Comp. Phys., vol. 82, pp. 330-347, (1989)



Discretisation

» Let x; and y; be equally spaced points such that i =1,...

and j=1,..., M.
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(Xi*—l,jv yl'*—l,j) (Xifﬁ }’ifj)
(X j{yicng)  (xigiyig)  (Xea{yi)
(Xij-1q{Yi1)
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Discretisation

» Let x; and y; be equally spaced points such that i =1,..., N

and j=1,..., M.

(X1 { i)
(Xi*—l,jv yl'*—l,j) (Xifﬁ }’ifj)
(X j{yicng)  (xigiyig)  (Xea{yi)
(Xij-1q{Yi1)

> Let the vector of unknowns be gx(; ;) and 7x(; ;) such that

-
u= [qX(l,l)a"' » Ax(N,1) " Ax(N,M)s TIx(1,1) an(N,M)]

» Use finite differences to discretise the derivatives
» Obtain 2NM equations

G(u)=0



Numerical Approach

To solve the system

1. Set up an initial guess u°

2. Until convergence
2.1 Solve J(u™)é" = —G(u")
22 Setu™l =u"+ A", 0< A< 1
2.3 Test for convergence



Numerical Approach

To solve the system

1. Set up an initial guess u°

2. Until convergence
2.1 Solve J(u™)é" = —G(u")
22 Set u™l =u"+ A", 0< A< 1
2.3 Test for convergence

This method relies on an initial guess u® and the Jacobian J.



Jacobian

The sparsity of the linearised Jacobian for flexural-gravity waves

4 4
{ 4

C:

200 400 600 800
nz =237250



Solving the System of Equations

The most computationally intensive part is computing the
Jacobian. We consider two ways of solving the system of
equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution.

» Can use the Jacobian for some previous iterate as a
preconditioner.

Note: completely matrix-free methods can't be used since the
Jacobian is not a sparse matrix



Forcing Term

We use the following pressure as a forcing for depression waves

-0.1

0.2 4




Sample Bifurcation Branch

Forced depression waves using the nonlinear model for ice
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Sample Solutions

Solutions for forced waves underneath an ice sheet
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Sample Solutions

Solutions for forced waves underneath an ice sheet




Summary of Bifurcation Branch

Forced depression waves using the nonlinear model for ice
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Solutions in the red region are truncated, but after the turning
point, obtain solitary lumps.
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Summary of Bifurcation Branch

Forced depression waves using the nonlinear model for ice

0.5

1.2 1.25 1.3 1.35 1.4

1.45
Froude number (F)

Solutions in the red region are truncated, but after the turning
point, obtain solitary lumps.



Bifurcation Branch

Comparison of the bifurcation branches for flexural-gravity waves
with the linear and the nonlinear elasticity models

Linear Elasticity Nonlinear Elasticity

0.2 0.2

] )
0.2 - 02 -
-0.4 -0.4

20 20
5 0 5 0
0 -20 0 20
0
[ea}

-0.1

-0.2

Amplitude

-0.3

. . . . n N . L
128 1.28 1.3 132 1.34 136 138 1.4 142 144 146
Froude number F

Note: both models give the same wave amplitude, but different
Froude numbers



Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.
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Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.




Flexural-Gravity Bifurcation Branch

Comparison of the bifurcation branch for linear elasticity model
and the nonlinear elasticity model.
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Elevation waves are represented as crosses and depression waves as
circles.
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Conclusions

v

Can compute solutions to both models for flexural-gravity
waves in 2D (periodic) and 3D (solitary)

v

Both models produce similarly shaped profiles, but at different
Froude numbers (or different wave speeds)

v

The code is easy to use and easy to modify

v

A variety of numerical methods have been tested



Future Work

» Examine the convergence to solitary lumps

» Compute accurate free surface waves without a forcing

» Do free surface depression or elevation waves bifurcate away
from 07



Thank you for your attention
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