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Goal

Efficiently compute solutions for different models for waves
under ice (flexural-gravity waves) and compare the solutions.



Waves Under Ice Generated by a Moving Truck1

on the operational season length, ice properties, and water depth jeop-
ardize transport efficiency and safety and thus calls for the periodic
adaption of breakthrough mitigation strategies.

5. Applied SAR data and processing details

The radar data applied in this study were acquired by two forma-
tion-flying satellites comprised in the TanDEM-Xmission from the Ger-
man Aerospace Centre (DLR) and EADS Astrium GmbH (Krieger et al.,
2013). As reflected in its name, the mission's SAR sensors operate in
X-band, that is, with a free-space wavelength equal to 3.11 cm. Tan-
DEM-X signals passing through pure freshwater ice, with an internal
temperature of −5 °C, can be expected to take on a wavelength of
about 1.74 cm and penetrate to a depth of roughly 11 m (Mätzler and
Wegmüller, 1987). At the time of acquisition, both sensors were operat-
ing in the StripmapMode, with a horizontal transmit and receive polar-
ization (HH), a spatial resolution of 0.9 m by 2.0 m and a mid-swath
incidence angle of about 22°. The time lapse between the acquisition
of the first and second SAR data set was 10 s and unique to the pursuit
monostatic phase of the first TanDEM-X science episode. This phase
lasted fromOctober 2014 toMarch 2015; the data utilized herewere ac-
quired on February 10, 2015.

DInSAR processing was carried out consistent with conventional
practice (Ferretti et al., 2007a) using the GAMMA software (Werner et
al., 2000). The processing steps were as follows: image co-registration,
interferogram formation, topographic phase correction using an exter-
nal DEM, phase unwrapping (Costantini, 1998) and large scale phase
trend removal. The external DEMwasproduced fromdata acquired dur-
ing the TanDEM-X globalmapping episode on February 11, 2014. At this
particular time, the two SAR sensorswere configured to operate concur-
rently in the interest of obtaining the best possible data for DEM
generation.

The DInSAR data sets weremulti-looked, in range and azimuth, over
4 × 2 pixels in order to reduce noise and create products with a pixel
spacing of 3.6 m by 4 m. Two versions of the differential interferogram
were generated, a version with additional noise reduction by means of
a 3 × 3 moving window adaptive filter (Goldstein and Werner, 1998)
and a version without. The version with the lowest level of noise was
used in quantitative analysis (see Figs. 4, 5 and 7), the other in qualita-
tive analysis (see Figs. 3, 6 andAppendix A). Phase filteringwas found to
remove very subtle wide area patterns in the displacements, so the un-
filtered version was used for visualization. Differential phase values
were converted to vertical displacements using the radar geometry.
Final displacement products were geocoded to the UTMWGS84 coordi-
nate system with a pixel spacing of 4 m by 4 m.

6. Results and discussion

On February 10, 2015 the TanDEM-X satellites imaged several trans-
port convoys travelling along the TCWR onGordon Lake. Fig. 3a displays
a subset of one of two resulting radar backscatter intensity maps. The
corresponding ice cover vertical displacement map, obtained by
means of DInSAR analysis, is presented in Fig. 3b. The oblique aerial pho-
tograph shown in Fig. 3cwas taken onMarch 4, 2015. Fig. 3a and c show
that the observed section of the TCWR comprises three lanes. These
lanes represent the primary route (east), express route (centre), and
backup route (west) and individually support traffic in both directions.
Movement of loaded trucks – mostly northbound – is restricted to the
primary route; the gross weight of these vehicles ranges from about
40 to 70 t. The lane of choice for empty trucks – largely southbound –
is the express route; their typical gross weight is about 20 t. The speed
limits associated with the primary and express route on Gordon Lake
are 25 km h−1 (≈7 m s−1) and 60 km h−1 (≈17 m s−1), respectively.
The maximum speed on shoreline approaches is 10 km h−1

(≈3 m s−1). According to measurements available from the TCWR

Fig. 3. (a–c). Transport trucks travelling along the Tibbitt-to-ContwoytoWinter Road (TCWR)on February 10, 2015: (a) radar backscatter intensitymap showing a section of the three-lane
TCWR on Gordon Lake, (b) corresponding ice cover vertical displacement map (lake ice areas only) and (c) photograph taken on March 4, 2015. Numbers 1 to 3 showing on the vertical
displacementmap identify loaded northbound trucks that travel at an estimated speed of 7m s−1; similarly 4 to 6mark empty southbound trucks with an estimated velocity of 16m s−1.
The spacing of the superimposed cross grid is 500 m by 500 m; the red-and-white line transect identifies the location of the plot presented in Fig. 4.

59J.J. van der Sanden, N.H. Short / Cold Regions Science and Technology 133 (2017) 56–62

Figure: Waves generated by transport trucks.

1J.J. van der Sanden and N.H. Short, “Radar satellites measure ice cover
displacements induced by moving vehicles”, Cold Regions Science and
Technology, 133, 56-62 (2017)



Tsunami Under Ice2

Figure: Observations of coastal landslide-generated tsunami under an ice
cover in Quebec

2J. Leblanc et al, “Observations of Coastal Landslide-Generated Tsunami
Under an Ice Cover: The Case of Lac-des-Seize-̂Iles, Québec, Canada”
Submarine Mass Movements and their Consequences, pp. 607-614, (2016)
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Model for Water Waves

For an inviscid, incompressible fluid with velocity potential
φ(x , y , z , t), the forced Euler’s equations are given by

4φ = 0, (x , y , z) ∈ Ω,

φz = 0, z =−h,
ηt + ηxφx + ηyφy = φz , z =η(x , y , t),

φt +
1

2
|∇φ|2+

1

F 2
η + P(x , y , t) = −D δH

δη
, z =η(x , y , t),

where
h: depth
F = c√

gh
: Froude number

D: flexural rigidity
η(x , y , t): variable surface
P(x , y , t): external pressure distribution
δH
δη : condition at the interface.
Ω: either periodic or infinite in x and y



Conditions at the Interface



Conditions at the Interface

The term modelling the ice assumes
I Thin elastic plate with constant thickness
I The ice bends with the water waves
I No friction between the ice and the water
I Continuous sheet, no breaking
I No shear

with the coefficient for flexural rigidity D given by

D =
Eh3

12(1− ν2)

with E: Young’s modulus, ν: Poisson ratio, h: thickness of the ice.



Models For a Thin Sheet of Ice

We consider two models

I Biharmonic (linear) model, assuming ice behaves like an
Euler-Bernoulli thin elastic plate that gets deflected by a load
(regime where curvature is small)

HL =
1

2

∫
(4η)2dA

I Cosserat (nonlinear) model, assuming the sheet of ice can
bend, twist and stretch (has a Willmore energy) 3

HN =
1

2

∫
(κ1 + κ2)2dS with κ1, κ2 principle curvatures

3Plotnikov and Toland, “Modelling nonlinear hydroeslastic waves”, Phil.
Trans. R. Soc. 369, 1942-2956 (2011)
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Background

A lot of work on this topic, here are a select few

I Modelling ice: Since Greenhill (1886), people have been deriving
linear and nonlinear elasticity models with some that conserve
energy (for example Plotnikov-Toland/Cosserat model) and some
that don’t (for example Kirchoff-Love model) For a review see
Squire et at. (2007)

I Existence of Solutions:

I Solutions in two dimensions:

I Solutions in three dimensions:

I High performance computing techniques:
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I Modelling ice:

I Existence of Solutions: Existence for some parameters using
Lagrangian formulation for travelling waves (Toland et al., 2008).
Akers, Ambrose and Sulon prove existence and show bifurcation
branches of solutions in 2D (2017).

I Solutions in two dimensions:
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A lot of work on this topic, here are a select few

I Modelling ice:

I Existence of Solutions:

I Solutions in two dimensions:

I Vanden-Broeck and Părău (2011) computed generalised
solitary waves and periodic waves under an ice sheet using the
Kirchhoff-Love model.

I Gao and Vanden-Broeck (2014) numerically computed periodic
and generalised solitary waves using Plotnikov-Toland model.

I Solutions for gravity waves and capillary-gravity waves have
been computed using AFM method by Deconinck, Oliveras
and T.

I Solutions in three dimensions:

I High performance computing techniques:



Background

A lot of work on this topic, here are a select few

I Modelling ice:

I Existence of Solutions:

I Solutions in two dimensions:

I Solutions in three dimensions:

I Asymptotic models by Wang and Milewski (2013) show
flexural-gravity solitary waves do not bifurcate from zero
amplitude solution.

I Vanden-Broeck and Părău have been using the BIM method to
compute three dimensional waves for gravity, capillary-gravity
and the linear model for flexural-gravity waves

I High performance computing techniques:



Background

A lot of work on this topic, here are a select few

I Modelling ice:

I Existence of Solutions:

I Solutions in two dimensions:

I Solutions in three dimensions:

I High performance computing techniques: Pethiyagoda et al.
(2014) computed small amplitude solutions for wake patterns using
Krylov methods, using a preconditioner based on the linearisation.
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Methods

There is a variety of methods for reformulating the problem. We
focus on

1. Boundary Integral Method (BIM) (1989) based on work by
Forbes.

2. Ablowitz, Fokas and Musslimani method (AFM) (2006)

Both of these methods have their advantages and disadvantages.
The main two disadvantages are

I Small denominators in the integrands for BIM

I Exponentially large terms in the integrands for AFM
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Identity behind BIM

Use Green’s second identity∫
V

(α∆β − β∆α)dV =

∮
S(V )

(
α
∂β

∂n
− β∂α

∂n

)
dS

where in three dimensions, β is the fundamental solution given by

1

4π

1

((x − x∗)2 + (y − y∗)2 + (z − z∗)2)1/2

and α = φ− x , which satisfies Laplace’s equation.



Identity behind AFM

If both φ and ψ satisfy Laplace’s equation, then

(φzψx + ψzφx)x + (φzψy + ψzφy )y + (φzψz − φxψx − φyψy )z = 0

Let ψ(x , y , z) = e ik1x+ik2y+ikz be a particular solution with

k =
√

k21 + k22 .

Use the divergence theorem and the boundary as well as conditions
on the solutions to obtain the non-local equation.



Surface Variables

Reformulate into surface variables (Zakharov 1969)

q(x , y , t) = φ(x , y , z =η, t)

Using chain rule,

φx =
(1 + η2y )qx − ηxηyqy − ηxηt

1 + |∇η|2

φy =
(1 + η2x)qy − ηxηyqy − ηyηt

1 + |∇η|2

φz =
ηxqx + ηyqy + ηt

1 + |∇η|2

Then the Bernoulli condition (local equation) becomes

qt +
1

2
|∇q|2+gη− (ηt +∇q · ∇η)2

2(1 + |∇η|2)
= −D δH

δη
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Reformulation

Starting with Euler’s equations

I In two dimensions, the local equation is given by

qt +
1

2
q2x + gη − 1

2

(ηt + ηxqx)2

1 + η2x
= −D δH

δη
.

I In two dimensions,the nonlocal equation 4 is given by∫ 2π

0
e ikx (iηt cosh(k(η + h)) + qx sinh(k(η + h))) dx = 0,

∀k ∈ Z, k 6= 0.

4Ablowitz, Fokas and Musslimani, “On a new non-local formulation of water
waves”, J. Fluid Mech., vol. 562, pp. 313343 (2006)
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Reformulation
I Switching to the travelling frame by setting

(x , t)→ (x−ct, t).
I Looking at the steady-state problem, set ηt = qt = 0.
I Use the local equation to obtain qx .
I The non-local equation becomes∫ 2π

0

e ikx

√
(1 + η2x)

(
c2 − 2gη − 2D

δH

δη

)
sinh(k(η + h))dx = 0.

∀k ∈ Z, k 6= 0.

where δH
δη for the linear model is

δH

δη
= η4x

and for the nonlinear model

δH

δη
=

1

(1+η2x)
∂x

[
1

(1+η2x)
∂x

(
ηxx

(1+η2x)3/2

)]
+

1

2

(
ηxx

(1+η2x)3/2

)3
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Numerical Continuation

Recall∫ 2π

0

e ikx

√
(1 + η2x)

(
c2 − 2gη − 2D

δH

δη

)
sinh(k(η + h))dx = 0.

We want to generate a bifurcation diagram:

1. Assume in general ηN(x) =
∑N

j=1 aj cos(jx).

2. Linearizing we can find the bifurcation will
start when c =

√
(g + σ) tanh(h) and

η(x) = a cos(x).

3. Use this guess in Newton’s method to
compute the true solution.

4. Scale the previous solution to get a guess for
the new bifurcation parameter.

5. Apply Newton’s method to find the solution.
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Resonance

At the bifurcation point, the resonance condition is given by

(g + D)K tanh(h)−
(
g + K 4D

)
tanh(Kh) = 0. (K 6= 1).

then we obtain the equivalent of Wilton ripples.



Flexural-Gravity waves: Resonant Solutions at k = 10

h = 0.05 and D ≈ 8.1085× 10−5



Comparing Models in Infinite Depth
Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.01



Comparing Models in Infinite Depth
Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.1



Comparing Models in Infinite Depth
Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.3



Comparing Models in Infinite Depth
Bifurcation branches change direction depending on flexural
rigidity D and can differ for different models

Figure: Small amplitude waves for the nonlinear model and linear model
for ice with D = 0.5



Flexural-Gravity waves: Infinite Depth

Infinite depth with D = 0.5
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Models for Ice

The two different models are considered

I Biharmonic (linear) model

δH

δη
= ∇4η

I Cosserat (nonlinear) model

δH

δη
=

2
√
a

[
∂x

(
1 + η2y
√
a
∂xH

)
− ∂x

(
ηxηy
√
a
∂yH

)
− ∂y

(
ηxηy
√
a
∂xH

)
+ ∂y

(
1 + η2x√

a
∂yH

)]

+ 4H3 − 4KH

where

a = 1 + η2x + η2y

H =
1

2
a3/2

[
(1 + η2y )ηxx − 2ηxyηxηy + (1 + η2x )ηyy

]
K =

1

a2

[
ηxxηyy − η2xy

]
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System of Equations
The final form of equations to solve for flexural-gravity waves in
infinite depth is

1

2

(1+η2x)q2y +(1+η2y )q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F 2
+P+D

δH

δη
=

1

2∫ ∞
−∞

∫ ∞
−∞

[(q−q∗− x +x∗)K1 + ηxK2] dxdy = 2π(q∗−x∗)

where

K1 =
1

d3/2
(η − η∗ − (x − x∗)2ηx − (y − y∗)2ηy )

K2 =
1

d1/2

with

d(x , y , x∗, y∗, η) = (x − x∗)2 + (y − y∗)2 + (η − η∗)2

.



Symmetry
Symmetry in y direction

η(x , y) = η(x ,−y)

and
q(x , y) = q(x ,−y)

implies additional terms

1

2

(1+η2x)q2y +(1+η2y )q2x − 2ηxηyqxqy

1+η2x +η2y
+
η

F
− 1

2
= F (η)∫ ∞

0

∫ ∞
−∞

[
(q−q∗− x +x∗)K̃1 + ηx K̃2

]
dxdy = 2π(q∗−x∗)

where

K̃1 = K̄1(x , y , η, x∗, y∗, η∗) + K̄1(x ,−y , η, x∗, y∗, η∗)
K̃2 = K̄2(x , y , η, x∗, y∗, η∗) + K̄2(x ,−y , η, x∗, y∗, η∗)



Removing the Singularity

Part of the integral is singular 5. Remove it by noting that∫ ∫
ηx K̃2dxdy =∫ ∫ [

K̃2ηx − η∗x S̃2
]
dxdy + η∗x

∫ ∫
S̃2dxdy

where

S2 =
1√

(1+η∗2x )(x−x∗)2+2η∗xη
∗
y (x−x∗)(y−y∗)+(1+η∗2y )(y−y∗)2

The integral in the box can be computed since it looks like∫
1
z dz = ln z .

5L.K. Forbes, “An algorithm for 3-dimensional free-surface problems in
Hydrodynamics”, J. of Comp. Phys., vol. 82, pp. 330-347, (1989)
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Discretisation
I Let xi and yj be equally spaced points such that i = 1, . . . ,N

and j = 1, . . . ,M.

(xi,j , yi,j)(xi−1,j , yi−1,j)

(x∗i−1,j , y
∗
i−1,j)

(xi+1,j , yi+1,j)

(x∗i,j , y
∗
i,j)

(xi,j−1, yi,j−1)

(xi,j+1, yi,j+1)

I Let the vector of unknowns be qx (i ,j) and ηx (i ,j) such that

u =
[
qx (1,1), · · · , qx (N,1), · · · , qx (N,M), ηx (1,1), · · · , ηx (N,M)

]T
I Use finite differences to discretise the derivatives
I Obtain 2NM equations

G (u) = 0
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Numerical Approach

To solve the system

1. Set up an initial guess u0

2. Until convergence

2.1 Solve J(un)δn = −G (un)
2.2 Set un+1 = un + λδn, 0 < λ < 1
2.3 Test for convergence

This method relies on an initial guess u0 and the Jacobian J.
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Jacobian

The sparsity of the linearised Jacobian for flexural-gravity waves



Solving the System of Equations

The most computationally intensive part is computing the
Jacobian. We consider two ways of solving the system of
equations

1. Inexact Newton Method: (direct method) uses an inexact
Jacobian (not computed at each step).

2. Modified Newton Method: (iterative method) using a
preconditioned Krylov method to construct the solution.

I Can use the Jacobian for some previous iterate as a
preconditioner.

Note: completely matrix-free methods can’t be used since the
Jacobian is not a sparse matrix



Forcing Term
We use the following pressure as a forcing for depression waves



Sample Bifurcation Branch

Forced depression waves using the nonlinear model for ice



Sample Solutions

Solutions for forced waves underneath an ice sheet
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Summary of Bifurcation Branch

Forced depression waves using the nonlinear model for ice

Solutions in the red region are truncated, but after the turning
point, obtain solitary lumps.
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Bifurcation Branch

Comparison of the bifurcation branches for flexural-gravity waves
with the linear and the nonlinear elasticity models

Note: both models give the same wave amplitude, but different
Froude numbers



Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.



Flexural-Gravity Wave Profiles

Comparison of the solution profiles for linear elasticity model and
the nonlinear elasticity model.



Flexural-Gravity Bifurcation Branch
Comparison of the bifurcation branch for linear elasticity model
and the nonlinear elasticity model.

Elevation waves are represented as crosses and depression waves as
circles.
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Conclusions

I Can compute solutions to both models for flexural-gravity
waves in 2D (periodic) and 3D (solitary)

I Both models produce similarly shaped profiles, but at different
Froude numbers (or different wave speeds)

I The code is easy to use and easy to modify

I A variety of numerical methods have been tested



Future Work

I Examine the convergence to solitary lumps

I Compute accurate free surface waves without a forcing

I Do free surface depression or elevation waves bifurcate away
from 0?



Thank you for your attention
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